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Mitochondria play crucial roles in regulating metabolism and longevity. A

body of recent evidences reveals that the gut microbiome can also exert sig-

nificant effects on these activities in the host. Here, by summarizing the

currently known mechanisms underlying these regulations, and by compar-

ing mitochondrial fission–fusion dynamics with bacterial interactions such

as quorum sensing, we hypothesize that the microbiome impacts the host

by communicating with their intracellular relatives, mitochondria. We high-

light recent discoveries supporting this model, and these new findings reveal

that metabolite molecules derived from bacteria can fine-tune mitochon-

drial dynamics in intestinal cells and hence influence host metabolic fitness

and longevity. This perspective mode of chemical communication between

bacteria and mitochondria may help us understand complex and dynamic

environment–microbiome–host interactions regarding their vital impacts on

health and diseases.

Introduction

As described by the predominant endosymbiotic the-

ory, the origin of intracellular organelles, mitochon-

dria, can be traced back to bacterial cells that

accidentally form a symbiotic relationship with some

methanogenic archaea billions of years ago [1–3].
While relying on carbon organics provided by the host

cells, the proto-mitochondria also conducted respira-

tion to pay back with considerably more energy, lead-

ing to an enormous evolutionary advantage and

eventually gave rise to the present thriving kingdom of

eukaryotes. Numerous comparative molecular studies

have demonstrated that mitochondria evolved from

Rickettsiales bacteria [4–9] (Fig. 1). In addition to this

obligate endosymbiosis, eukaryotes possess their

‘external symbionts’ – hundreds of bacterial species

that colonize body surfaces and cavities [10]. The gut

microbiome inhabiting the digestive tract is a good

reprehensive of these symbionts, which shows stable

composition over time in healthy adults [11] and exerts

a substantial impact on the host physiology and

pathology [12].

In particular, mitochondria and the gut microbiome

both play crucial roles in regulating host metabolism

and longevity. Mitochondria and bacteria also share

commonalities in terms of intercommunications. Our

recent findings further reveal chemical communications

between bacteria and host mitochondria, and the

specific involvement of these communications in the
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control of metabolic and aging processes. Inspired by

these findings, we tentatively propose the hypothesis

that mitochondria still possess the remnant abilities of

communicating with extracellular bacteria, and the

impacts of symbiotic bacteria on the host act largely

through modulating mitochondrial activities. We also

describe the merits of using the nematode Caenorhab-

ditis elegans as a model system in deciphering this

microbiome–mitochondria communication.

Mitochondria with bacterial origin
signal to the nucleus

The endosymbiotic relationship between mitochondria

and eukaryotic cells have been continuously strength-

ened by evolutionary pressure, resulting in an extensive

gene transfer between the two genomes [13,14]. Now

in eukaryotic cells, a vast majority of mitochon-

drial proteins are encoded in the nucleus and trans-

ported into mitochondria for maturation following

cytoplasmic translation. Mitochondria coordinate

many vital metabolic functions such as fatty acid oxi-

dation and oxidative phosphorylation, and serve as the

powerhouse to carry out ATP production. Interest-

ingly, these metabolic functions are also

associated with the signaling role of mitochondria in

the control of nuclear activities. Retrograde signals

from mitochondria act through various transcriptional

and epigenetic factors to actively modulate gene

expression in the nucleus, such as alpha-ketoglutarate

metabolites, reactive oxygen species (ROS), and mito-

chondrial unfolded protein responses (UPRmt) [15]

(Fig. 2). In particular, UPRmt senses the perturbation

of the protein-folding environment in mitochondria,

and directs the translocation of transcription factors

into the nucleus to activate expressions of specific

chaperones and proteases [16–18]. This UPRmt signal-

ing process helps restore organelle functionality of

mitochondria under different stress conditions [19,20],

and consequently plays crucial roles in the regulation

of organismal longevity [21,22].

Mitochondrial dynamics regulates
metabolism and longevity

Mitochondria are highly dynamic organelles. Although

generally depicted as discrete organelles, multiple mito-

chondria frequently interconnect with each other,

forming a large intracellular reticulum and mixing

their membrane, matrix, and nucleoid contents [23–
25]. At the same time, mitochondria divide constantly

to facilitate organelle degradation and recycling

[26,27]. A number of guanosine triphosphate hydro-

lases mediate mitochondrial dynamics: Mitofusin

(Mfn1 and Mfn2) dimeric complexes and optic atro-

phy protein 1 mediate the connection between adjacent

mitochondria to facilitate fusion [28,29]; while dyna-

min-related protein 1 (DRP1) forms ring-like struc-

tures to constrict mitochondria where the fission of

organelles occurs [30,31]. The matter and information

exchange resulting from mitochondrial fusion helps

alleviate negative influences from impaired individual

organelles [32,33]. On the other hand, selective degra-

dation of damaged mitochondria through mitophagy

requires mitochondrial fission [34–37]. Overall, these

fusion and fission events keep mitochondria in a

dynamic balance and ensure their quality and quantity

controls, which are crucial for maintaining a healthy

functional mitochondrial network.

Mitochondrial fission–fusion dynamics is tightly

linked to mitochondrial bioenergetic functions and

metabolic health of cells and organisms [38]. Gener-

ally, mitochondrial fusion can greatly increase the effi-

ciency of ATP synthesis [39]. In cultured cells, nutrient

withdrawal has been found to promote mitochondrial

elongation through inhibiting mitochondrial fission by

protein kinase A-mediated DRP1 phosphorylation

[39,40] or through facilitating mitochondrial fusion by
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Fig. 1. The cladogram of bacteria showing the origin of

mitochondria. This phylogenetic relationship among representative

genera of clinical or ecological significance is inferred from

previous comparative molecular studies [8,9], with mitochondria

highlighted in red. Green color shows chloroplasts, result of

another endosymbiosis event from some cyanobacteria. Side bars

label the division between Gram negative and positive taxa.
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MFN1 deacetylation [41]. This starvation-induced

mitochondrial elongation increases ATP synthesis

capacity and efficiency, which sustains the energy

demand required under nutrient-limited environments

[39]. In contrast, excess nutrients can lead to mito-

chondrial fragmentation. For example, glucose over-

load promotes mitochondrial fragmentation in a

DRP1-dependent manner [42], and animals feeding on

a high-fat diet display reduced levels of MFN2 and

enhanced mitochondrial fragmentation [43–46]. Thus,

mitochondrial dynamics can be actively influenced by

environmental signals and coupled with cellular meta-

bolic status [44,47].

Mitochondrial dynamics is also closely associated

with the aging process [48–50]. With senescence, mito-

chondrial dynamics tends to shift toward fission more

than fusion in most of the tissues [50–52], which is

likely due to cumulated damages in mitochondria. The

fragmentation of mitochondrial network facilitates

mitophagy as a protective mechanism [53,54]. However,

with advancing age, mitochondrial biogenesis becomes

less effective [55], and the ability to maintain the plas-

ticity of fission–fusion dynamics declines. As a result,

superfused and swollen mitochondrial morphology is

often detected [56–60], which is proposed to compen-

sate for both quality and quantity decreases [48].

Interestingly, manipulation of mitochondrial dynam-

ics is sufficient to modulate both glucose and lipid

metabolic homeostasis systemically, and also influences

organism longevity. For example, mitochondrial frag-

mentation driven by MFN2 deletion in muscle and

hepatic cells disturbs glucose homeostasis and leads to

obesity in aged animals [61]. In contrast, impairment

of mitochondrial fission by DRP1 deletion in liver
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Fig. 2. Molecular communications between bacteria and mitochondria are vital for symbiotic bacteria to regulate metabolism and longevity in the

eukaryotic host. Bacteria communicate with each other through biofilm formation and quorum sensing that can be mediated by specific metabolites,

such as AHLs, AI-2(furanosyl borate diester), oligopeptides, and Υ-butyrolactones. On the other hand, mitochondria undergo organellar fission

and fusion and communicate through these dynamic processes. Interestingly, new discoveries reveal that mitochondrial fission–fusion dynam-

ics in the eukaryotic host cell can be regulated by chemical signals from symbiotic bacteria in the form of colanic acid and methyl metabolites.

These metabolite-mediated cross-kingdom communications are crucial for host metabolism and longevity.
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protects animals from high-fat diet-induced obesity

and metabolic disorders [62]. On the other hand, alter-

ations in mitochondrial electron transport chain activi-

ties modulate lifespan and healthspan in a variety of

organisms, through interplaying with diverse longevity

regulatory mechanisms such as insulin and mammalian

target of rapamycin signaling, dietary restriction, and

autophagy [63–67]. In C. elegans, dietary-restricted,

AMP-activated, protein kinase-mediated longevity is

associated with alterations in mitochondrial fission–fu-
sion dynamics and consequent changes in peroxisome

activities [52,68]. It is also shown that mitochondrial

fusion is essential for the lifespan extension conferred

by reduced insulin/insulin-like growth factor-1 signal-

ing [69]. More recently, studies in C. elegans and

Drosophila melanogaster further discover that a mild

induction of mitochondrial fission specifically in

intestinal cells is sufficient to promote organism long-

evity systemically [70,71]. Therefore, mitochondria

communicate through their fission–fusion dynamics,

which safeguards the homeostasis of these essential cel-

lular organelles and plays a pivotal role in the control

of metabolic health and longevity [72].

Bacteria live in a community

The community of bacteria is highly dynamic and inter-

active. Although conventionally considered unicellular

and isolated, bacteria do communicate and cooperate

with each other, resembling those cells in multicellular

organisms. One typical example in point is myxobacteria.

To survive harsh environments, multiple myxobacterial

cells can aggregate to form ‘swarms’ by contact-mediated

signaling, for the sake of better moving, feeding, and

reproducing [73]. In fact, the interactions between bacte-

rial cells are not limited to a single taxonomical group,

as evidenced by formation of biofilms ubiquitously

found on our planet, either on abiotic surfaces or in the

animal gut. A great variety of bacteria secrete a matrix

of extracellular polymeric substances that helps adhe-

sion and links cells together to form a colonial group

[74], a process typically triggered by unfavorable envi-

ronmental factors such as antibiotics [75]. Once embed-

ded in this complex biofilm structure, bacterial cells

undergo a lot of behavioral changes, differentially regu-

late many genes, and frequently exchange their genetic

materials [76,77]. As a result, biofilms provide not only

protection but also opportunities of communication

among otherwise isolated bacterial cells.

Moreover, virtually all bacterial species constitu-

tively produce diffusible chemical signals to alter gene

expression of others, referred to as quorum sensing.

These signal molecules include certain oligopeptides,

N-acyl homoserine lactones (AHLs), and autoinducer-

2 (AI-2, furanosyl borate diester) that stimulate syn-

thesis and release of themselves among different cells

[78,79]. Quorum sensing implies a response to popula-

tion density, allowing multiple bacterial cells to adjust

their growth and activities accordingly. Moreover, this

communication is required for multiple bacteria to

synchronize their gene expression so that macroscopic

effects can be achieved by these tiny organisms. For

instance, quorum sensing plays a central role in the

production of bioluminescence and in the biofilm for-

mation [80,81]. Although quorum sensing takes place

mostly among members of the same species, it is

intriguing to note the existence of interspecies commu-

nications via quorum sensing. For example,

Escherichia coli encodes proteins of the LuxR family

for detection of AHLs, a quorum-sensing signal

released only by other microbes [82]. Moreover, AI-2

is a universal signal mediating interspecies quorum

sensing because it is secreted and perceived by a great

variety of bacteria [79]. Thus, a bacterial community is

highly dynamic and communicative, not only compris-

ing diverse species but also adjusting their activities,

sending and receiving signals constantly.

Microbiome influences host
metabolism and longevity

Gut microbiome, consisting mainly of bacteria, inhabits

the digestive track of the host. An ever-growing body of

evidences suggests that the composition and metabolism

of the gut microbiome influence metabolic health and

aging. First of all, gut bacteria generate metabolic prod-

ucts that directly act on the host. They are responsible

for the synthesis of various vitamins to maintain meta-

bolic health of the host [83]. Gut bacteria can also break

down many carbohydrates that are otherwise nondi-

gestible, and ferment them into short-chain fatty acids

as nutrients to the host, which regulate fatty acid,

cholesterol, and glucose metabolism [84,85]. Without

them, germ-free mice are significantly leaner than nor-

mal mice [86–88]. In addition, primary bile acids are

processed by gut bacteria into secondary bile acids that

feed back to the liver and influence lipogenesis, gluco-

neogenesis, and insulin sensitivity in the host [89–92].
Moreover, changes in the host’s diet, lifestyle, and medi-

cation with antibiotics and other drugs dramatically

influence transcriptomic, proteomic, and biochemical

profiles of gut bacteria [93–96]. These bacterial changes

in turn modulate the susceptibility of the host to envi-

ronmental insults, dietary intervention, and diseases.

Human gut microbiome is dominated by two major

bacterial phyla, Firmicutes, and Bacteroidetes [97]. It is
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intriguing that both diet- and genetic-induced obesity

are associated with a reduction in Bacteroidetes and a

proportional increase in Firmicutes [98–101]. These

obese animals also display a less diverse microbiome

[102,103]. Conversely, the phylogenetic composition of

gut bacteria can determine the onset and progression of

obesity, through modulating the efficiency of energy

uptake [100,104] and inflammatory responses in the host

[105–111]. On the other hand, dietary inputs not only

reshape the phylogenetic structure of gut microbiome

but also reprogram gene expression and metabolite pro-

duction in these bacteria [96,112]. The regulatory loop

among the environment, gut microbiome and the host is

dynamic and complex, which can be mediated by differ-

ent signaling mechanisms [113,114].

Similarly, changes in gut microbiome are also associ-

ated with the aging process in the host [115]. The

reduction in bacterial number and diversity especially

that of Bifidobacterium spp. and Bacteroides spp. in the

elderly has been reported [116–118]. Furthermore, the

microbiome composition is significantly correlated with

increased frailty and age-related chronic conditions

among old individuals, and diet-driven microbiome

alterations have been shown to improve health in

elderly people [119]. Studies in model systems show

that the growth, proliferation and diversity of gut bac-

teria are good predictors of longevity [120,121]. More-

over, transplantation of gut microbiome from young to

middle-aged killifish prolongs lifespan and healthspan

[122]. Not only different bacterial species but also indi-

vidual bacterial genes are correlated with the longevity

regulation in the host. Specific bacterial mutants have

been shown to play a causative role in prolonging host

lifespan and healthspan [123–126]. Interestingly, some

of these beneficial effects are directly linked to specific

bacterial metabolites [123–126]. Therefore, an active

chemical communication between gut bacteria and the

host is essential for organism fitness during aging.

Evidences emerge for a
communication between microbiome
and mitochondria

Because of their critical roles in determining metabolic

health and longevity, both mitochondria and gut bacte-

ria become hot targets in biological and medical investi-

gations. However, studying them with the cellular

resolution at the organism level is highly challenging,

especially in mammalian models. First, fixation of mam-

malian tissues for microscopic observations undoubt-

edly interferes with the regulation of mitochondrial

dynamics, and may give limited or misleading results.

Secondly, mammalian microbiome is complex,

composed of 300–1000 bacterial species with a total

number even exceeding that of host cells [127–129]. Plus
tremendous individual compositional variations

[130,131], isolating any bacterial components for causa-

tive or mechanistic analyses would be extremely hard.

The nematode C. elegans has been extensively used as

a model organism. These soil-dwelling worms exhibit

many merits for laboratory manipulations, including

their short life time, low price in rearing, known genome

as well as the availability of numerous mutants and

transgenic lines. Most importantly, some innate features

of C. elegans make them ideal for studying mitochon-

drial and bacterial activities that influence host physiol-

ogy. First of all, their bodies are colorless and

transparent. After fluorescently labeling of mitochon-

drial-targeting sequences, mitochondrial dynamics can

be directly viewed in vivo with high resolution at the

organism level [26]. With a rapid technical progress on

lattice light-sheet microscopy [132], an even more

detailed real-time super-resolution monitoring of mito-

chondrial structure and dynamics becomes feasible

using C. elegans [133].

Furthermore, the gut of C. elegans is naturally colo-

nized by a complex community of commensal bacteria

whose composition is influenced but distant from the

environment [134,135]. This relationship between the

host and microbiome resembles that in humans, impli-

cating a valid model. More remarkably, a strain of

C. elegans has been tamed in laboratories [115]. This

strain is reared monoxenically, feeding on and accom-

modating in the gut a single bacterial clone, which,

therefore, carries an accurately defined microbiome. At

the same time of enjoying these merits, one should also

take necessary cautions to interpret conclusions

obtained using C. elegans, partly because the typical

bacteria used in laboratories, for example, E. coli OP50,

only colonize aging individuals and this colonization is

associated with bacterial pathogenesis [120,121,136].

However, with the simple manipulation of gut bacteria

and some proved conservation [137], C. elegans still rep-

resents an ideal model for studies of microbiome–host
interaction. Evidently, utilizing the system of C. elegans

and their symbiotic bacteria, a lot of insights on

microbe–host interactions have been gained [137,138],

especially the microbial contributions to metabolism

and aging [139–142].
Using C. elegans, our recent studies bring light into

the interaction between bacteria and mitochondrial

dynamics in the gut of the host. These communications

are mediated by chemical signals from intestinal bacte-

ria (Fig. 2). In one case, a cluster of bacterial metabo-

lites including betaine, methionine, and homocysteine

initiate a signaling cascade that triggers the nuclear
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receptor 5A nuclear receptor and activates hedgehog

signaling to regulate mitochondrial fission–fusion bal-

ance in intestinal cells. This bacteria–mitochondria com-

munication ultimately regulates fat storage homeostasis

in the host [112]. In another, a slime polysaccharide

named colanic acid, a major biofilm component of

E. coli, is secreted from intestinal bacteria. After enter-

ing the host cytoplasm via endocytosis, colanic acid

increases the fragmentation of intestinal mitochondria

in a DRP-1-dependent fashion, as well as enhances

UPRmt mediated by the transcription factor ATFS-1 in

response to mitochondrial stress. These signaling effects

of bacterial colanic acid on mitochondrial dynamics and

UPRmt consequently lead to lifespan extension and pro-

tection against age-associated pathologies, like germline

tumor progression and toxic amyloid-beta accumula-

tion, in the host [123]. Together, these results consis-

tently show that mitochondria undergo chemical

communication with bacteria, a process modulating

metabolic and senescent states of eukaryotic cells.

This view can also be strengthened by our unbiased

search for bacterial factors involved in the regulation of

host longevity [123]. This genome-wide analysis impli-

cates YceO and LsrC, two bacterial proteins important

for biofilm formation and AI-2 transport, and several

proteins controlling the level of colanic acid [123]. AI-2

is a key quorum-sensing molecule that has been

recorded to interact with eukaryotic cells [143,144],

although no mechanisms have been specified. As under-

going exclusive intracellular lives, mitochondria likely

preserve their capabilities of, and possibly are responsi-

ble for, perceiving quorum-sensing signals. This view

gains recent supports from the fact that a signaling

molecule secreted by Pseudomonas aeruginosa accumu-

lates within mitochondria and regulates cellular functions.

In this bacteria–mitochondria interaction, P. aeruginosa

secrets N-(3-oxo-dodecanoyl)-L-homoserine lactone

(3OC12), which is hydrolyzed by lactonase paraoxonase 2

in mitochondria to attenuate its toxicity. In the hydro-

lyzed form, 3OC12 acid stays in the mitochondria and

mediates calcium release and stress signaling through

intracellular acidification [145]. Collectively, based on

these new discoveries, it is reasonable to hypothesize that

the microbiome may affect the host by directly interacting

with mitochondria through bacterial metabolites and

specific signaling mechanisms.

Future perspectives

With our findings and other sporadic evidences, a model

that merges functionalities of mitochondria and micro-

biome is not only merely plausible but also probable.

Within the context of our model, we propose that the

mitochondria are the mediators for this cross-domain

chemical dialogue. This is not to deny the existence of

indirect communications from bacteria to mitochondria,

such as by regulating nuclear gene expression. But fol-

lowing the Law of Parsimony, a conserved and wide-

spread direct interaction is most likely. A systematic

search for signaling molecules sent by gut microbiome,

transporting mechanisms across the plasma membrane,

and receptors on mitochondrial outer membrane would

be essential to confirm this communication.

This model may help us understand many aspects of

physiological and pathological regulations by host–mi-

crobiome interactions. For example, gut microbiome

has been indicated to play vital roles in a number of

neurological disorders [146]. Clearly, these bacterial

effects on neurons have to occur via cell nonau-

tonomous mechanisms. Other than a way of indiscrim-

inately releasing certain molecules into body fluid, we

propose that the dialogue between bacteria and mito-

chondria likely is the underlying mode of action. On

one hand, patients with mutations in several mitochon-

drial dynamic regulators display neurological symp-

toms [147–150]; likewise, neurodegeneration and many

other diseases have been linked to dysregulation of

mitochondrial dynamics [151]. On the other hand,

mitochondria within different cells have been shown to

communicate with each other, resulting in a cell

nonautonomous effect [152]. Hence, the proposed

crosstalk exhibits high explanatory power for the func-

tion of microbiome in modulating systemic responses

of the host, as exampled by metabolism and aging.

There have been quite a few biological phenomena

following a ‘non-Darwinian’ pattern lacking mechanis-

tic explanations. Interesting to note, mitochondria are

inherited maternally, and the founding colonies of

microbiome in newborns are also from a maternal

source [153]. It would be intriguing to hypothesize that

the microbiome-mitochondria axis also plays a role in

mediating those maternal effects. By many means, a

chemical dialogue across the cell membrane, orches-

trated by mitochondria and symbiotic bacteria, is

promising to broaden our views on biological sciences.

We anticipate an era where the mitochondria-micro-

biome communication is fully characterized, which

would shed great light on improving metabolic health

and healthy aging.
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